Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhiping Yang, \ddagger Ping Zhong* and Maolin Hu

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China
\# Present address: Zhangzhou Vocational and Technical College, People's Republic of China

Correspondence e-mail: zhongp@wznc.zj.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.055$
$w R$ factor $=0.165$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-(2,5-dioxo-2,5-dihydro-1 H-pyrrol-1-yl)-1H-pyrazole-3-carbonitrile

The title compound, $\mathrm{C}_{15} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}$, is a tricyclic imide with an overall U -shape, each of the three rings being planar. These include a phenyl ring with two chloro and one trifluoromethyl substituents, a central pyrazole ring with a cyano substituent, and a dioxopyrrolidine ring.

Comment

Reaction of 2,6-dichloro-4-trifluoromethylamine with a suspension of nitrosyl sulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]pyrazole. When the latter was reacted with maleic anhydride, the title compound, (I), was obtained.

(I)

Compound (I) has been used to synthesize 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethyl)thiopyrazole, 5-amino-3-cyano-1-[2,6-dichloro-4-(tri-fluoromethyl)phenyl]-4-(trifluoromethylsulfenyl)pyrazole and 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)-phenyl]-4-(trifluoromethylsulfonyl)pyrazole, all of which are good insecticides (Hatton et al., 1993).

The molecular structure of compound (I) is illustrated in Fig. 1, and selected bond lengths and angles are given in Table 1. The molecule is composed of three planar moieties, viz. a benzene ring, a central pyrazole ring and a dihydropyrrole ring. The angle between the benzene and pyrazole planes is $75.49(14)^{\circ}$, and that between the dihydropyrrole and pyrazole planes is $49.62(16)^{\circ}$.

In the crystal structure, the molecules stack along the b axis, as shown in Fig. 2, and are connected by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2).

Experimental

Compound (I) was synthesized and purified according to the method of Hatton et al. (1993). Single crystals suitable for X-ray analysis were

Received 28 June 2004
Accepted 7 July 2004
Online 17 July 2004

Figure 1
The molecular structure of (I), showing the atomic numbering scheme and displacement ellipsoids at the 50% probability level.

Figure 2
The crystal packing of (I), viewed down the c axis.
obtained on slow evaporation of an ethyl acetate/cyclohexane (1:1) solution (m.p. 462-464 K). Spectroscopic analysis, IR (KBr, $v \mathrm{~cm}^{-1}$): 3089, 2253, 1742, 1562, 1497; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): 7.71 ($\left.s, 2 \mathrm{H}\right)$, $6.88(s, 1 H), 6.85(s, 2 H)$.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=401.13$
Monoclinic, $P 2_{1} /$ n
$a=12.8261$ (10) \AA
$b=8.9942$ (7) A
$c=14.6896$ (12) \AA
$\beta=104.217(1)^{\circ}$
$V=1642.7(2) \AA^{3}$
$Z=4$
Data collection

Bruker SMART APEX area-	3225 independent reflections
\quad detector diffractometer	2660 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.018$
Absorption correction: multi-scan	$\theta_{\max }=26.0^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-15 \rightarrow 14$
$T_{\min }=0.832, T_{\max }=0.916$	$k=-11 \rightarrow 9$
9003 measured reflections	$l=-18 \rightarrow 16$

Refinement

$\begin{array}{lc}\text { Refinement on } F^{2} & w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0945 P)^{2}\right. \\ R\left[F^{2}>\right.\end{array}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$+0.8386 P$]
$w R\left(F^{2}\right)=0.165$
$S=1.06$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.72 \mathrm{e}^{\circ}{ }^{-3}$
3225 reflections
235 parameters
H -atom parameters constrained
$\Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N1-N2	1.352 (3)	N2-C10	1.327 (3)
N1-C8	1.359 (3)	C8-C9	1.361 (4)
N1-C5	1.423 (3)	C9-C10	1.395 (4)
N3-C11	1.136 (4)	C10-C11	1.443 (4)
N4-C8	1.401 (3)	C12-C15	1.477 (4)
N4-C13	1.407 (3)	C14-C15	1.319 (4)
N4-C12	1.410 (3)		
N2-N1-C8	111.9 (2)	C8-C9-C10	103.8 (2)
N2-N1-C5	117.93 (19)	N2-C10-C9	113.3 (2)
C8-N1-C5	129.9 (2)	N2-C10-C11	117.8 (2)
C8-N4-C13	124.2 (2)	C9-C10-C11	128.9 (3)
C8-N4-C12	125.5 (2)	N3-C11-C10	178.7 (3)
C13-N4-C12	109.8 (2)	N4-C12-C15	105.7 (2)
C10-N2-N1	103.5 (2)	O1-C13-C14	129.0 (3)
N1-C8-C9	107.6 (2)	N4-C13-C14	105.5 (2)
N1-C8-N4	121.8 (2)	C15-C14-C13	109.5 (3)
C9-C8-N4	130.7 (2)		

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.50	$3.380(4)$	157
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.93	2.49	$3.410(3)$	170

Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $x, 1+y, z$.
All H atoms were located in difference Fourier maps but were placed in geometrically idealized position and constrained to ride on their parent atom, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2_{\mathrm{eq}}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (No.20272075) and the Natural Science Foundation of Zhejiang Province (No. M203001).

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Hatton, L. R., Bunain, B. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. \& Roberts, D. A. (1993). US Patent No. 5232940.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

