Received 28 June 2004

Accepted 7 July 2004

Online 17 July 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhiping Yang,‡ Ping Zhong* and Maolin Hu

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

Present address: Zhangzhou Vocational and Technical College, People's Republic of China

Correspondence e-mail: zhongp@wznc.zj.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.055 wR factor = 0.165 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)-1*H*-pyrazole-3-carbonitrile

The title compound, $C_{15}H_5Cl_2F_3N_4O_2$, is a tricyclic imide with an overall U-shape, each of the three rings being planar. These include a phenyl ring with two chloro and one trifluoromethyl substituents, a central pyrazole ring with a cyano substituent, and a dioxopyrrolidine ring.

Comment

Reaction of 2,6-dichloro-4-trifluoromethylamine with a suspension of nitrosyl sulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-pyrazole. When the latter was reacted with maleic anhydride, the title compound, (I), was obtained.

Compound (I) has been used to synthesize 5-amino-3cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethyl)thiopyrazole, 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfenyl)pyrazole and 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfonyl)pyrazole, all of which are good insecticides (Hatton *et al.*, 1993).

The molecular structure of compound (I) is illustrated in Fig. 1, and selected bond lengths and angles are given in Table 1. The molecule is composed of three planar moieties, *viz*. a benzene ring, a central pyrazole ring and a dihydropyrrole ring. The angle between the benzene and pyrazole planes is $75.49 (14)^{\circ}$, and that between the dihydropyrrole and pyrazole planes is $49.62 (16)^{\circ}$.

In the crystal structure, the molecules stack along the *b* axis, as shown in Fig. 2, and are connected by weak $C-H \cdots O$ and $C-H \cdots N$ hydrogen bonds (Table 2).

Experimental

C 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Compound (I) was synthesized and purified according to the method of Hatton *et al.* (1993). Single crystals suitable for X-ray analysis were

Figure 1

The molecular structure of (I), showing the atomic numbering scheme and displacement ellipsoids at the 50% probability level.

Figure 2

The crystal packing of (I), viewed down the c axis.

obtained on slow evaporation of an ethyl acetate/cyclohexane (1:1) solution (m.p. 462–464 K). Spectroscopic analysis, IR (KBr, ν cm⁻¹): 3089, 2253, 1742, 1562, 1497; ¹H NMR (CDCl₃, p.p.m.): 7.71 (s, 2H), 6.88 (s, 1H), 6.85 (s, 2H).

Crystal data

$C_{15}H_5Cl_2F_3N_4O_2$	$D_x = 1.622 \text{ Mg m}^{-3}$
$M_r = 401.13$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3254
a = 12.8261 (10) Å	reflections
b = 8.9942 (7) Å	$\theta = 2.4 - 26.0^{\circ}$
c = 14.6896 (12) Å	$\mu = 0.45 \text{ mm}^{-1}$
$\beta = 104.217 \ (1)^{\circ}$	T = 298 (2) K
$V = 1642.7 (2) \text{ Å}^3$	Block, colorless
Z = 4	$0.43 \times 0.38 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART APEX area-	3225 independent reflections

detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.832, T_{\max} = 0.916$ 9003 measured reflections

3225 independent reflections
2660 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.018$
$\theta_{\rm max} = 26.0^{\circ}$
$h = -15 \rightarrow 14$
$k = -11 \rightarrow 9$
$l = -18 \rightarrow 16$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0945P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.055$	+ 0.8386P]
$wR(F^2) = 0.165$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
3225 reflections	$\Delta \rho_{\rm max} = 0.72 \text{ e } \text{\AA}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.38 {\rm e} {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

N1-N2	1.352 (3)	N2-C10	1.327 (3)
N1-C8	1.359 (3)	C8-C9	1.361 (4)
N1-C5	1.423 (3)	C9-C10	1.395 (4)
N3-C11	1.136 (4)	C10-C11	1.443 (4)
N4-C8	1.401 (3)	C12-C15	1.477 (4)
N4-C13	1.407 (3)	C14-C15	1.319 (4)
N4-C12	1.410 (3)		
N2-N1-C8	111.9 (2)	C8-C9-C10	103.8 (2)
N2-N1-C5	117.93 (19)	N2-C10-C9	113.3 (2)
C8-N1-C5	129.9 (2)	N2-C10-C11	117.8 (2)
C8-N4-C13	124.2 (2)	C9-C10-C11	128.9 (3)
C8-N4-C12	125.5 (2)	N3-C11-C10	178.7 (3)
C13-N4-C12	109.8 (2)	N4-C12-C15	105.7 (2)
C10-N2-N1	103.5 (2)	O1-C13-C14	129.0 (3)
N1-C8-C9	107.6 (2)	N4-C13-C14	105.5 (2)
N1-C8-N4	121.8 (2)	C15-C14-C13	109.5 (3)
C9-C8-N4	130.7 (2)		

「able	2	
Judro	en-bonding	a aeome

H	ydrogen-	bonding	geometry	(A, °).
		0	0 2	× /	/

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7 - H7 \cdots O1^{i}$	0.93	2.50	3.380 (4)	157
$C14 - H14 \cdots N2^{ii}$	0.93	2.49	3.410 (3)	170

Symmetry codes: (i) $x - \frac{1}{2}, \frac{3}{2} - y, z - \frac{1}{2}$; (ii) x, 1 + y, z.

All H atoms were located in difference Fourier maps but were placed in geometrically idealized position and constrained to ride on their parent atom, with C-H distances of 0.93 Å and $U_{iso}(H) =$ $1.2_{eq}(C).$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (No.20272075) and the Natural Science Foundation of Zhejiang Province (No. M203001).

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Hatton, L. R., Bunain, B. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. & Roberts, D. A. (1993). US Patent No. 5 232 940.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.